364 research outputs found

    Tensor-Scalar Torsion

    Get PDF
    A theory of gravity with torsion is examined in which the torsion tensor is constructed from the exterior derivative of an antisymmetric rank two potential plus the dual of the gradient of a scalar field. Field equations for the theory are derived by demanding that the action be stationary under variations with respect to the metric, the antisymmetric potential, and the scalar field. A material action is introduced and the equations of motion are derived. The correct conservation law for rotational angular momentum plus spin is observed to hold in this theory.Comment: 10 pages, LaTeX, Mod. Phys. Lett. A accepte

    Test particles behavior in the framework of a lagrangian geometric theory with propagating torsion

    Full text link
    Working in the lagrangian framework, we develop a geometric theory in vacuum with propagating torsion; the antisymmetric and trace parts of the torsion tensor, considered as derived from local potential fields, are taken and, using the minimal action principle, their field equations are calculated. Actually these will show themselves to be just equations for propagating waves giving torsion a behavior similar to that of metric which, as known, propagates through gravitational waves. Then we establish a principle of minimal substitution to derive test particles equation of motion, obtaining, as result, that they move along autoparallels. We then calculate the analogous of the geodesic deviation for these trajectories and analyze their behavior in the nonrelativistic limit, showing that the torsion trace potential Ď•\phi has a phenomenology which is indistinguishable from that of the gravitational newtonian field; in this way we also give a reason for why there have never been evidence for it.Comment: 12 pages, no figures, to appear on Int. Journ. Mod. Phys.

    Lagrangian versus Quantization

    Get PDF
    We discuss examples of systems which can be quantized consistently, although they do not admit a Lagrangian description.Comment: 8 pages, no figures; small corrections, references adde

    Quantization of Nonstandard Hamiltonian Systems

    Get PDF
    The quantization of classical theories that admit more than one Hamiltonian description is considered. This is done from a geometrical viewpoint, both at the quantization level (geometric quantization) and at the level of the dynamics of the quantum theory. A spin-1/2 system is taken as an example in which all the steps can be completed. It is shown that the geometry of the quantum theory imposes restrictions on the physically allowed nonstandard quantum theories.Comment: Revtex file, 23 pages, no figure

    Consistency of Semiclassical Gravity

    Get PDF
    We discuss some subtleties which arise in the semiclassical approximation to quantum gravity. We show that integrability conditions prevent the existence of Tomonaga-Schwinger time functions on the space of three-metrics but admit them on superspace. The concept of semiclassical time is carefully examined. We point out that central charges in the matter sector spoil the consistency of the semiclassical approximation unless the full quantum theory of gravity and matter is anomaly-free. We finally discuss consequences of these considerations for quantum field theory in flat spacetime, but with arbitrary foliations.Comment: 12 pages, LATEX, Report Freiburg THEP-94/2

    What is the Geometry of Superspace ?

    Full text link
    We investigate certain properties of the Wheeler-DeWitt metric (for constant lapse) in canonical General Relativity associated with its non-definite nature. Contribution to the conference on Mach's principle: "From Newtons Bucket to Quantum Gravity", July 26-30 1993, Tuebingen, GermanyComment: 10 pages, Plain Te

    Torsion-induced spin precession

    Full text link
    We investigate the motion of a spinning test particle in a spatially-flat FRW-type space-time in the framework of the Einstein-Cartan theory. The space-time has a torsion arising from a spinning fluid filling the space-time. We show that for spinning particles with nonzero transverse spin components, the torsion induces a precession of particle spin around the direction of the fluid spin. We also show that a charged spinning particle moving in a torsion-less spatially-flat FRW space-time in the presence of a uniform magnetic field undergoes a precession of a different character.Comment: latex, 4 eps figure

    Quantum Field Theory with Null-Fronted Metrics

    Full text link
    There is a large class of classical null-fronted metrics in which a free scalar field has an infinite number of conservation laws. In particular, if the scalar field is quantized, the number of particles is conserved. However, with more general null-fronted metrics, field quantization cannot be interpreted in terms of particle creation and annihilation operators, and the physical meaning of the theory becomes obscure.Comment: 11 page

    Exercise-Mediated Lowering of Glutamine Availability Suppresses Tumor Growth and Attenuates Muscle Wasting

    Get PDF
    Glutamine is a central nutrient for many cancers, contributing to the generation of building blocks and energy-promoting signaling necessary for neoplastic proliferation. In this study, we hypothesized that lowering systemic glutamine levels by exercise may starve tumors, thereby contributing to the inhibitory effect of exercise on tumor growth. We demonstrate that limiting glutamine availability, either pharmacologically or physiologically by voluntary wheel running, significantly attenuated the growth of two syngeneic murine tumor models of breast cancer and lung cancer, respectively, and decreased markers of atrophic signaling in muscles from tumor-bearing mice. In continuation, wheel running completely abolished tumor-induced loss of weight and lean body mass, independently of the effect of wheel running on tumor growth. Moreover, wheel running abolished tumor-induced upregulation of muscular glutamine transporters and myostatin signaling. In conclusion, our data suggest that voluntary wheel running preserves muscle mass by counteracting muscular glutamine release and tumor-induced atrophic signaling
    • …
    corecore